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ABSTRACT
BACKGROUND: Socioeconomic factors have been consistently linked with the structure of children’s hippocampus
and anterior cingulate cortex (ACC). Chronic stress—as indexed by hair cortisol concentration—may represent an
important mechanism underlying these associations. Here, we examined associations between hair cortisol and
children’s hippocampal and ACC structure, including across hippocampal subfields, and whether hair cortisol
mediated associations between socioeconomic background (family income-to-needs ratio, parental education) and
the structure of these brain regions.
METHODS: Participants were 5- to 9-year-old children (N = 94; 61% female) from socioeconomically diverse families.
Parents and children provided hair samples that were assayed for cortisol. High-resolution, T1-weighted magnetic
resonance imaging scans were acquired, and FreeSurfer 6.0 was used to compute hippocampal volume and rostral
and caudal ACC thickness and surface area (n = 37 with both child hair cortisol and magnetic resonance imaging
data; n = 41 with both parent hair cortisol and magnetic resonance imaging data).
RESULTS: Higher hair cortisol concentration was significantly associated with smaller CA3 and dentate gyrus hip-
pocampal subfield volumes but not with CA1 or subiculum volume. Higher hair cortisol was also associated with
greater caudal ACC thickness. Hair cortisol significantly mediated associations between parental education level and
CA3 and dentate gyrus volumes; lower parental education level was associated with higher hair cortisol, which in turn
was associated with smaller volume in these subfields.
CONCLUSIONS: These findings point to chronic physiologic stress as a potential mechanism through which lower
parental education level leads to reduced hippocampal volume. Hair cortisol concentration may be an informative
biomarker leading to more effective prevention and intervention strategies aimed at childhood socioeconomic
disadvantage.
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Although socioeconomic background has been consistently
linked with children’s brain structure (1), the proximal mecha-
nisms underlying these associations are not well understood.
Socioeconomic disadvantage is associated with a range of
chronic stressors, including family conflict and turmoil;
household chaos, noise, and crowding; and neighborhood
violence (2). Socioeconomic context has also been linked with
the physiologic stress response, including hypothalamic-
pituitary-adrenal (HPA) axis function, which is most
commonly indexed by salivary cortisol concentration (3).
Although salivary cortisol is a robust measure of acute stress,
its diurnal variation often requires the collection of multiple
samples that are less reflective of chronic stress because of
the susceptibility of this measure to situational factors.
Recently, socioeconomic factors (family income, parental ed-
ucation level) have been linked with hair cortisol concentration
SEE COMMENTARY
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(4–6), a relatively novel, reliable, and valid measure of chronic
stress obtained through a single sample (7,8).

Socioeconomic factors have been associated with the
structure of brain regions that are particularly sensitive to
chronic stress and strongly implicated in risk for multiple
psychiatric disorders. Socioeconomic disadvantage has been
repeatedly associated with reduced gray matter in the hippo-
campus (9–18) and anterior cingulate cortex (ACC) (15,19–22),
which are involved in cognitive skills, including episodic
memory and executive function (EF), respectively (23–26).
Structural differences in the hippocampus and ACC have been
observed in a number of psychiatric disorders, including major
depressive disorder and attention-deficit/hyperactivity disorder
(24–27).

Animal work has established that chronic stress exerts
pronounced effects on the morphology of the hippocampus
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and ACC, which have a high density of glucocorticoid re-
ceptors (28–30). These effects represent adaptations to the
context in which the brain develops (30). Chronic stress has
been associated with dendritic remodeling and reduced den-
dritic spine density in hippocampal neurons (28) and dendritic
shrinkage in ACC regions (28,29,31). The hippocampus con-
sists of a number of subfields including the cornu ammonis 1
to 4 (CA1–CA4), dentate gyrus (DG), and subiculum (32). The
CA3 and DG subfields are particularly susceptible to chronic
stress, with stress inducing dendritic remodeling in the CA3
and suppressing neurogenesis in the DG (33,34). These effects
are mediated not only by glucocorticoids but also by excitatory
amino acids (e.g., glutamate) and other cellular mechanisms
(35). Thus, socioeconomic disadvantage may increase chronic
stress and alter HPA axis function, which in turn influences the
structure of hippocampal regions (particularly CA3 and DG)
and the ACC.

In humans, childhood exposure to stressful life events has
been associated with hippocampal and ACC structure
(12,14,36,37). However, few studies have examined children’s
HPA axis function in relation to their brain structure, and results
have been inconsistent (37–39). In the only such study to focus
on hair cortisol, higher hair cortisol concentration was asso-
ciated with smaller hippocampal volume in a subsample with
Child Behavior Checklist total problems scores above the 91st
percentile (39). It is unknown whether hair cortisol may be
associated with the same hippocampal subfields in humans as
those shown to be altered by chronic stress in animal models.
In addition, although stressful life events mediate associations
of socioeconomic factors with children’s hippocampal struc-
ture (14) and adults’ prefrontal function (36), no work has
examined chronic physiologic stress as a mediator of associ-
ations between socioeconomic factors and children’s brain
structure.

The goals of this study were to examine associations be-
tween stress exposure and hippocampal and ACC structure in
children and whether stress exposure mediated associations
between socioeconomic factors and children’s hippocampal
and ACC structure (see Figure 1 for the full model). Family
income-to-needs ratio and parental education were examined
separately as they represent distinct aspects of children’s
environments that relate differentially to their development (40).
Indeed, family income-to-needs ratio and parental education
level have been linked with material resources and the quality
of parent–child interactions, respectively (40), both of which
have been linked with variability in children’s stress exposure
(2). Stress exposure was measured at multiple levels (41), with
parent-reported perceived stress representing the family’s
exposure to stressors (e.g., stressful life events, material
hardship) and parent and child hair cortisol concentrations
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representing chronic physiologic stress in the parent and child,
respectively.

We hypothesized a priori that lower family income-to-needs
ratio and parental education would be associated with greater
stress exposure, which in turn would be associated with
reduced gray matter in the hippocampus and ACC (16).
Further, we hypothesized that stress exposure would be most
strongly associated with volume reductions in the DG and CA3
hippocampal subfields (17,30,42). In particular, we predicted
that stress exposure would be more strongly associated with
the CA3 and DG compared with two other components of the
hippocampal formation—the CA1 and subiculum (32). We
tentatively predicted that children’s hair cortisol concentration
would be the most likely of the three stress measures to relate
to their hippocampal and ACC structure since it is the most
direct measure of children’s stress. To assess the ramifications
of these associations for observable cognitive performance,
we also examined the associations of hippocampal and ACC
structure with episodic memory and EF, respectively.
METHODS AND MATERIALS

Participants

We recruited participants in New York, New York, by posting
flyers and meeting families at local community children’s
events. The recruited families represented a wide range of
parental educational attainment. Interested families were
contacted by phone and screened for eligibility. Inclusionary
criteria for children were the following: 5 to 9 years of age; $37
weeks of gestation at birth; born from a singleton pregnancy;
no history of medical or psychiatric problems; spoke primarily
English in the home; no contraindications for magnetic reso-
nance imaging (MRI) scanning.

Sample Characteristics. Children ranged from 5.06 to
9.87 years of age (N = 94; 61% female) and were from so-
cioeconomically diverse families (parental education range:
6.50–20.00 years; family income-to-needs ratio range:
0.17–15.21). Fifty percent were Hispanic and/or Latino; 31%
were African American; and 14% were European American
(Table 1).

Hair Samples and MRI Data. In all, 94 families completed
questionnaires and the child testing battery. Hair cortisol data
were available for 78 of 82 parents (95% female) who provided
hair samples (see Supplemental Figure S1 for a flow chart).
Hair cortisol data were available for 65 of 67 children (77%
female) who provided hair samples (Supplemental Figure S1).
MRI data were acquired for 66 of 85 children who enrolled in
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Figure 1. Hypothesized mechanistic model of
how socioeconomic factors may influence episodic
memory and executive function via brain structure.
ACC, anterior cingulate cortex.
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Table 1. Descriptive Statistics for Sample Characteristics
(N = 94)

Mean SD

Child Age, Years 7.03 1.29

Parental Education Level, Yearsa 14.14 2.64

Family Income-to-Needs Ratio 2.68 2.79

% n

Child Sex, Female 60.64 57

Child Race and/or Ethnicity

African American, Non-Hispanic, and Non-Latino 30.85 29

Hispanic and/or Latino 50.00 47

European American, Non-Hispanic, and Non-Latino 13.83 13

Other 5.32 5

Family Income Below U.S. Poverty Thresholdb 29.79 28

U.S., United States.
aParental education level reflects educational attainment averaged

across parents in the household.
bIncome-to-needs ratio , 1.00.
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the MRI portion of the study and participated in a mock scan
(Supplemental Figure S1). There were 37 children with both
MRI and child hair cortisol data and 41 children with both MRI
and parent hair cortisol data.

Procedure

Families participated in 2 campus visits within a month. During
the first visit, parents completed questionnaires, hair samples
were collected from parents and children, and children
completed neurocognitive tasks. Children also participated in a
practice MRI session in a mock scanner to familiarize them
with scanning. During the second visit, children completed an
MRI scanning session. Informed consent/assent was obtained
from all families, and all procedures were approved by the
Institutional Review Boards at the New York State Psychiatric
Institute and Teachers College, Columbia University.

Image Acquisition and Processing

MRI data were acquired on a 3T GE Discovery MR750 scanner
with a 32-channel head coil (GE Healthcare, Chicago, IL). A
high-resolution, T1-weighted fast spoiled gradient-echo
sequence was acquired in the sagittal plane (repetition
time = 7.1 ms; echo time = minimum full; inversion time = 500
ms; flip angle = 11�; 176 slices; 1.0-mm slice thickness; field of
view = 25 cm; inplane resolution = 1.0 3 1.0 mm). All images
were visually inspected for motion artifacts and ghosting,
resulting in the exclusion of 15 participants’ MRI data from
analyses. There was no manual editing of imaging data that
passed quality control procedures.

Hippocampal Volume. Hippocampal subfield segmenta-
tion was conducted using the automated algorithm available in
FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/) (43). A
comprehensive description of the pipeline has been published
(see the Supplement) (43,44). For each hemisphere, subfields
that are segmented include the CA2/3 (combined in the atlas
because of indistinguishable MRI contrast), CA4, granule cell
layer of the DG, CA1, and subiculum (Figure 2). The CA4 and
granule cell layer of the DG subfields were combined because
Biological Psych
both are components of the DG and because the ability to
distinguish the molecular layer in T1-weighted images is
limited (17). Measures of whole hippocampal volume were
obtained by summing the volumes of the subfields (not
including the hippocampal fissure). All hippocampal segmen-
tations passed visual inspection for major errors. Hippocampal
subfield segmentation could not be completed for 1
participant.

ACC Thickness and Surface Area. Images were pro-
cessed using standard automated procedures in FreeSurfer
6.0. Following cortical surface reconstruction (45,46), the cor-
tex was parcellated into regions based on gyral and sulcal
structure (47,48). Cortical thickness is computed as the closest
distance from the gray matter–white matter boundary to the
gray matter–cerebrospinal fluid boundary at each vertex on the
tessellated surface. Surface area is computed as the sum of
the areas of each tessellation falling within a given region.
FreeSurfer cortical thickness and surface area measurements
have been shown to be reliable and have been well validated
(49,50). The boundaries of the rostral and caudal ACC were
determined via the Desikan-Killiany atlas (47). Rostral and
caudal ACC thickness and surface area data were extracted.
Measures

Socioeconomic Factors. Parents reported their annual
household income, the number of adults and children in the
household, and their educational attainment in years. The
income-to-needs ratio was calculated by dividing household
income by the poverty threshold for the size of the family.
Family income-to-needs ratio was logarithmically transformed
to correct for positive skew. Educational attainment was
averaged across all parents in the household.

Parental Perceived Stress. Parents completed the
Perceived Stress Scale (51), Life Experiences Survey (52), and
Material Deprivation Scale (53) (see the Supplement). Principal
component analysis was used to extract one factor with an
eigenvalue .1.0 (1.69), which explained 56.37% of the total
variance. Factor loadings ranged from 0.63 to 0.85. This factor
score (termed “perceived stress”) was used in analyses.

Hair Cortisol Concentration. A small section of hair ($15
mg) proximal to the posterior vertex of the participant’s scalp was
cut. Each hair sample was approximately 3 cm long, thereby
containing cortisol deposited during roughly the past 3 months.
Samples were stored at 220�C until being sent for analysis.
Samples were processed and analyzed using methods previ-
ously validated and described in detail (see the Supplement)
(54,55). Hair cortisol values outside of 3 SDs from the mean were
excluded (n = 3 parents; n = 5 children), and hair cortisol data
were logarithmically transformed to correct for skew (39). Previ-
ous studies have been inconsistent in terms of whether certain
potential confounding variables are associated with hair cortisol
concentration (6). In this study, there were no significant asso-
ciations between hair cortisol and hair washing frequency, use of
steroid medications, use of oral contraceptives, or use of hair
dye.
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Figure 2. Color-coded depiction of the focal hippocampal subfields in coronal (left) and sagittal (right) views from a representative participant. The subfield
volumes are overlaid on the whole-brain T1-weighted processed image. CA, cornu ammonis; GC-DG, granule cell layer of the dentate gyrus.
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Episodic Memory and EF. Children completed the Picture
Sequence Memory, Flanker Inhibitory Control and Attention,
List Sorting Working Memory, and Dimensional Change Card
Sort Tests from the National Institutes of Health Toolbox
Cognition Battery (56–59). Raw scores were used in analyses.
Scores on the latter 3 tasks, putative measures of core EF
components, were significantly correlated (r = .28–.43, p ,

.001) and were thus standardized and averaged to create an
EF composite.

Statistical Analyses

Using SAS software version 9.4 (SAS Institute, Cary, NC),
multiple linear regression analyses were conducted to examine
associations between socioeconomic factors and children’s
hippocampal and ACC structure (c paths); socioeconomic
factors and children’s stress exposure (a paths); and children’s
stress exposure and their hippocampal and ACC structure
(b paths). Covariates included child (or parent) age, sex, and
race and/or ethnicity. Race and/or ethnicity was not significant
in any of the regression models and did not improve model fit,
and was thus dropped from the final models for parsimony. In
models predicting hippocampal volume, whole-brain volume
was included as a covariate. Cortisol concentration has been
shown to correlate with cognitive functioning in an inverted
U-shaped pattern (60). Thus, a quadratic term (hair cortisol
concentration squared) was initially included in regression
analyses, but it was not significant across models and was
dropped from the final analyses. Effect sizes (hp

2) are pre-
sented, with values of .01, .06, and .14 indicating small, me-
dium, and large effects, respectively. To control for multiple
comparisons, false discovery rate correction (61) was applied
(via PROC MULTTEST in SAS) to the hippocampal subfield
and ACC analyses, separately (a = .05). False discovery rate–
corrected p values are reported in the text in addition to the
tables (see the Supplement). For instances in which the a and b
paths were both supported in regression analyses, the signif-
icance of the indirect or mediated effect (ab path) was
assessed using bias-corrected bootstrapping via the PRO-
CESS macro (62,63). Indirect effects were significant if the
95% confidence intervals (CIs) did not include zero (62,64).

RESULTS

Descriptive statistics and zero-order correlations are pre-
sented in Table 2 and Supplemental Table S1, respectively.
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Socioeconomic Factors and Children’s
Hippocampal and ACC Structure

Higher parental education level was significantly associated
with larger total hippocampal volume (b = .18, p = .04, hp

2 =
.08), DG volume (b = .22, p = .04, hp

2 = .10), and CA1 volume
(b = .26, p = .04, hp

2 = .12) (Supplemental Table S2). Effect
sizes were medium to large in the DG, CA1, and CA3 subfields
and small-to-medium in the subiculum (Supplemental
Figure S2). Family income-to-needs ratio was not signifi-
cantly associated with hippocampal volume.

Higher parental education level was significantly associated
with reduced rostral (b = 2.39, p = .01, hp

2 = .18) and caudal
(b = 2.30, p = .03, hp

2 = .10) ACC thickness and greater rostral
(b = .30, p = .02, hp

2 = .13) and caudal (b = .24, p = .046, hp
2 =

.08) ACC surface area (Supplemental Table S2). Family
income-to-needs ratio was not significantly associated with
rostral or caudal ACC thickness or surface area.

Socioeconomic Factors and Children’s Stress
Exposure

Higher parental education level was significantly associated
with lower parental perceived stress (b = 2.29, p = .01, hp

2 =
.08) and lower child hair cortisol concentration (b = 2.40, p =
.01, hp

2 = .16) (Supplemental Figure S3 and Supplemental
Table S3). The latter association remained significant after
additionally controlling for parental hair cortisol (b = 2.25, p =
.03, hp

2 = .10). Parental education level was not significantly
associated with parent hair cortisol. Family income-to-needs
ratio was not significantly associated with the stress-
exposure measures.

Stress Exposure and Hippocampal Volume in
Children

Higher child hair cortisol concentration was significantly
associated with smaller volume in the CA3, (b = 2.26, p = .04,
hp

2 = .12) and DG (b = 2.23, p = .04, hp
2 = .13) (Figure 3), but

not in the CA1 or subiculum, after accounting for child age,
sex, and whole-brain volume. Effect sizes for the CA3 and DG
were medium to large, whereas those for the CA1 and sub-
iculum were negligible to small (Supplemental Figure S4).
When child hair cortisol (p = .07–.08) and parental education
level (p = .19–.20) were entered simultaneously into models
predicting CA3 and DG volume, neither remained significant,
but child hair cortisol retained its medium to large effect size
org/journal
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Table 2. Descriptive Statistics for Stress Exposure and
Hippocampal and ACC Structure

n Mean SD

Perceived Stress Scale Score 94 29.38 7.54

Life Experiences Survey Score 94 10.77 10.25

Material Deprivation Scale Score 94 2.56 2.12

Parent Hair Cortisol Value, pg/mga 75 32.00 91.96

Child Hair Cortisol Value, pg/mga 60 25.20 25.34

Total Hippocampal Volume, mm3 50 3145.65 311.86

CA1 Volume, mm3 50 585.15 66.70

CA3 Volume, mm3 50 183.55 25.71

Dentate Gyrus Volume, mm3 50 474.03 53.27

Subiculum Volume, mm3 50 392.30 37.89

Rostral ACC Thickness, mm 51 3.35 0.24

Caudal ACC Thickness, mm 51 3.05 0.24

Rostral ACC Surface Area, mm2 51 1257.78 254.50

Caudal ACC Surface Area, mm2 51 1301.59 228.86

ACC, anterior cingulate cortex; CA, cornu ammonis.
aLogarithmically transformed hair cortisol values were used in

analyses, but raw scores are shown here for ease of interpretation.

A

B

Figure 3. Higher hair cortisol concentration (logarithmically transformed)
was significantly associated with (A) smaller CA3 volume (mm3) and (B)
smaller dentate gyrus volume (mm3) in children (n = 37).
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(hp
2 = .08–.09) while parental education did not (hp

2 = .04–.05).
Parental perceived stress and hair cortisol concentration were
not significantly associated with hippocampal volume
(Supplemental Table S4).

Stress Exposure and ACC Structure in Children

Higher child hair cortisol concentration was significantly
associated with greater caudal ACC thickness after accounting
for child age and sex (b = .40, p = .04, hp

2 = .17) (Figure 4 and
Supplemental Table S4). Parent perceived stress and hair
cortisol were not associated with ACC thickness. When child
hair cortisol (p = .05) and parental education level (p = .10) were
entered simultaneously, neither remained significant, but child
hair cortisol retained its medium to large effect size (hp

2 = .10).
Parental perceived stress and parent and child hair cortisol
were not associated with ACC surface area.

Parental Education, Child Hair Cortisol
Concentration, and Hippocampal and ACC
Structure

Child hair cortisol concentration significantly mediated the
associations between parental education level and CA3 vol-
ume (ab path = 0.11, SE = 0.07, 95% CI 0.01–0.29), and be-
tween parental education level and DG volume (ab path = 0.10,
SE = 0.06, 95% CI 0.01–0.25). Lower parental education level
was associated with higher child hair cortisol concentration,
which in turn was associated with smaller CA3 and DG vol-
umes (Figure 5). Child hair cortisol concentration did not
significantly mediate the association between parental edu-
cation and caudal ACC thickness.

Socioeconomic Factors, Hippocampal and ACC
Structure, and Cognitive Functioning

Higher family income-to-needs ratio (b = .21, p = .04, hp
2 = .04)

and parental education level (b = .25, p = .03, hp
2 = .06) were

significantly associated with higher episodic memory. Higher
Biological Psych
family income-to-needs ratio was significantly associated with
higher EF (b = .26, p = .02, hp

2 = .07), but parental education
level was not (Supplemental Table S5). However, hippocampal
structure was not significantly associated with episodic
memory, and ACC structure was not significantly associated
with EF task performance.
DISCUSSION

The goals of this study were to examine associations between
children’s stress exposure and their hippocampal and ACC
structure and to investigate stress exposure as a mediator of
socioeconomic differences in hippocampal and ACC structure.
Stress exposure was measured in terms of parent-reported
family stressors and parent and child hair cortisol concentration
(41), with parental stress reflecting children’s exposure to stress
in the home environment. Animal models have consistently
demonstrated that chronic stress impacts hippocampal and ACC
structure (29,30). However, no previous human study has
focused on hair cortisol in both parents and children as indices of
chronic physiologic stress in relation to children’s brain structure.
iatry December 15, 2019; 86:921–929 www.sobp.org/journal 925
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Figure 4. Higher hair cortisol concentration
(logarithmically transformed) was significantly asso-
ciated with greater thickness (mm) in the caudal
anterior cingulate cortex (ACC) in children (n = 37).
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Hair Cortisol Concentration Is Associated With
Hippocampal Subfield Volume in Children

This study is the first to report that higher child hair cortisol
concentration is significantly associated with reduced volume
in the CA3 and DG hippocampal subfields, consistent with
animal work showing these subfields to be particularly sus-
ceptible to chronic stress (33,34). While medium to large effect
sizes were found for the CA3 and DG subfields, negligible to
small effect sizes were found for the CA1 and subiculum
(Supplemental Figure S4). These results are consistent with the
notion that prolonged exposure to circulating cortisol may alter
hippocampal structure (65). At the cellular level, animal
research has shown stress-induced reductions in dendritic
length and branching in CA3 neurons and impaired neuro-
genesis in the DG (30). The single previous study of hair
cortisol and hippocampal structure in children yielded mixed
results (39) that were possibly due in part to variability in as-
sociations across hippocampal subfields, which were not
assessed in that study (39). In addition to glucocorticoids,
Parental 
educaƟon

Child hair 
corƟsol

Child CA3 
volume

β = .28*

β = .17

Parental 
educaƟon

Child hair 
corƟsol

Child dentate 
gyrus volume

β = .24*

β = .14

A

B

Figure 5. Hair cortisol concentration significantly mediated the associa-
tions between (A) parental education level and CA3 volume and (B) parental
education level and dentate gyrus volume in children (n = 37). The solid and
dotted lines from parental education to child CA3 or dentate gyrus volume
represent the total (c path) and direct associations (c0 path), respectively.
*p , .05, **p , .01, 1p , .10.
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excitatory amino acids and other mechanisms are also
involved in stress-induced remodeling of hippocampal neurons
(30,35), and future work could help disentangle these
processes.

Hair Cortisol Concentration Mediates
Socioeconomic Differences in Children’s
Hippocampal Volume

Parental education level was significantly positively associated
with DG and CA1 volume, with medium to large effect sizes for
those subfields plus the CA3 subfield (Supplemental
Figure S2). Child hair cortisol concentration significantly
mediated associations between parental education level and
CA3 and DG subfield volume. Lower parental education level
was associated with higher hair cortisol concentration
[consistent with previous work on a portion of this sample (4)],
which in turn was linked with smaller CA3 and DG volumes.
Whereas stressful life events have been found to mediate the
association between socioeconomic background and chil-
dren’s hippocampal volume (14), this is the first study to show
that chronic physiologic stress may partially explain these
associations. Socioeconomic disadvantage may increase
long-term cortisol exposure and in turn alter the structural
development of stress-sensitive hippocampal subfields.

Results were specific to parental education level rather than
family income-to-needs ratio, although the two were strongly
correlated (r = .68). Parental education level may more directly
reflect the quality of parent–child interactions, whereas family
income-to-needs ratio may more directly reflect material
resources (40). Thus, one possibility is that variation in parent–
child interaction quality may be partially responsible for as-
sociations between parental education level and children’s
hair cortisol concentration. In addition, results were specific to
child hair cortisol rather than parental hair cortisol or perceived
stress. Thus, direct measures of children’s physiologic stress
responses may be valuable in understanding stress-related
variability in brain structure. More work with larger samples
is needed to unpack the ways in which poverty-related
stressful environments alter HPA axis function (e.g., circa-
dian disruption due to sleep deprivation) and in turn brain
structure.

Hair Cortisol Concentration Is Associated With ACC
Thickness in Children

Higher child hair cortisol concentration was also associated
with greater thickness in the caudal (dorsal) ACC, consistent
org/journal
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with research identifying the ACC as particularly susceptible to
chronic stress (29,66). This association could be related to the
ACC’s role in regulating the HPA axis (41,67,68), resolving
conflict associated with threat detection, or filtering out threat-
related stimuli during cognitive processing (e.g., trying to
complete a task in the midst of stressors) (66,69–71). This
result contrasts in direction with animal models of stress
showing dendritic shrinkage in the ACC (28,29,31) and null
findings from one previous study of children (39). These dis-
crepancies could be due to differences in the nature of these
associations by age or other sample characteristics.

Developmentally, cortical thickness decreases rapidly in
childhood and early adolescence, after which it more gradually
thins, and ultimately it plateaus in early to mid adulthood (72).
One possibility is that lower levels of chronic physiologic
stress may foster greater age-related cortical thinning in the
caudal ACC. Some evidence has linked positive parenting
(often a buffer of children’s stress) with an increased rate of
prefrontal cortex thinning (73) and, conversely, maternal
aggressive behavior with thickening of superior frontal cortex
in adolescents (74). Another possibility is that higher chronic
stress may lead to blunting of the HPA axis stress-response
system (41), leading to paradoxically lower levels of hair
cortisol, which in turn are associated with reduced ACC
thickness. Longitudinal studies that assess chronic stress in
relation to rates of cortical thinning over time are needed to
address these possibilities.

Children from more advantaged families demonstrated
higher episodic memory and EF skills, consistent with the re-
sults of a large body of work (1,3). However, children’s hip-
pocampal and ACC structure were not associated with these
cognitive outcomes. In previous research, hippocampal vol-
ume has been associated with episodic memory (18,23), and
ACC thickness has been inversely associated with EF
(24–26,75,76). However, other work has suggested that links
between gray matter morphology and cognition vary by age
and socioeconomic background (9,77–79). Thus, it is possible
that in this socioeconomically diverse sample of 5- to 9-year-
old children, associations between brain structure and cogni-
tive task performance were obscured because of variability in
these characteristics across the sample. Furthermore, more
work is needed to elucidate the implications of these results for
socioeconomic differences in risk for psychiatric disorders (80).

There are several limitations of this study that should be
taken into account when interpreting these results. First,
causal inferences cannot be made because this was a cross-
sectional, correlational study, and all possible confounds
(e.g., parent IQ) could not be ruled out. Second, it was more
difficult to collect hair samples from boys because their hair
was often too short, similar to sampling constraints noted in
previous studies (81). And, previous work has identified sex-
specific effects of early-life stressors on hippocampal volume
(82). Third, head motion has a negative effect on estimates of
cortical thickness, and younger participants generally move
more during image acquisition (83). Accordingly, motion-
corrupted images were excluded from analyses and all sta-
tistical models were controlled for age. Fourth, subcortical
volume estimates derived from automated segmentation al-
gorithms may differ from those resulting from manual tracing
(12,84,85). In this study, we used the FreeSurfer 6.0
Biological Psych
hippocampal subfield segmentation procedures, which are
accurate and reliable (43,44,85).

This study showed that higher hair cortisol concentration is
significantly associated with smaller CA3 and DG hippocampal
subfield volume in children, a finding consistent with results of
animal research underscoring the adaptive plasticity of the
hippocampus (30,35). Hair cortisol concentration significantly
mediated associations between socioeconomic background
and CA3 and DG volume. Socioeconomic disadvantage may
lead to increased long-term cortisol exposure that in turn alters
the structural development of the hippocampus. Prevention
and intervention strategies that reduce children’s exposure to
poverty-related chronic stress may be instrumental in ensuring
their healthy neurodevelopment across the life span.
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